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A detailed temporal and spatiotemporal stability analysis of two-layer falling films with density and viscosity
stratification is performed by using the Chebyshev collocation method to solve the full system of linear
stability equations. From the neutral curves Re�k� for the surface mode and the interface mode of instability,
obtained for different density ratios � of the upper layer to the lower layer, it is found that smaller density ratios
make the surface mode and the short-wave interface mode much more stable, and can even make the short-
wave interfacial instability disappear. Moreover, through the study of the local growth rates of the spatiotem-
poral instability as a function of the ray velocity V, it is found that for not too small incline angles like �
=0.2, the two-layer flow is always convectively unstable, and there is a transition between long- and short-
wave instabilities which is determined by the Briggs-Bers collision criterion. Due to the existence of the
absolute Rayleigh-Taylor instability for ��0 and �=0, a transition from convective to absolute instability can
be detected at small incline angles, and the corresponding boundary curves are plotted for different Reynolds
numbers, viscosity ratios, and incline angles. It is found that there exists a limit Reynolds number above which
the two-layer film flow can only be convectively unstable for a fixed small incline angle. The spatial amplifi-
cation properties of the convective waves are finally presented for both surface and interface modes.
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I. INTRODUCTION

The fluid dynamics of immiscible multiple-layered strati-
fied shear flows is a fascinating and challenging subject in
physics �1�, which also has a practical interest for some en-
vironmental flows, such as rock glaciers �2�, and for indus-
trial processes, such as the coating of a color film which
sometimes consists of more than ten different layers. It is
thus important to explore the dynamical characteristics of
multilayered liquid films. Kao �3,4� first investigated the
long wave instability of the two-layer falling films for differ-
ent heights, different densities, and different viscosities of
the two layers. By using the same long-wave approximation
as Yih �5� for one-layer films, he obtained two critical Rey-
nolds numbers corresponding to two different modes of in-
stability, now usually regarded as the surface mode and the
interface mode. When the less viscous layer is adjacent to the
plate, the interfacial instability occurs below a critical Rey-
nolds number and thus exists even when the Reynolds num-
ber approaches zero, i.e., in inertialess conditions. Later,
Loewenherz and Lawrence �2� studied the inertialess insta-
bilities through a zero-Reynolds-number approximation to
the Orr-Sommerfeld equations. They focused on the role of
the viscosity stratification, assuming equal density in the two
layers. They showed that the inertialess interfacial instability
can occur at finite wavelength. Later, in a detailed study
which still assumes equal-density layers, Chen �6� verified
that the unstable wave motion, generated when the less vis-
cous layer is in the region next to the wall, can occur for any

Reynolds number and any finite interface and surface ten-
sion. Recently, Hu et al. �7� pointed out that there exists a
critical density ratio below which the finite-wavelength iner-
tialess interfacial instability disappears. By use of a kinetic
energy budget, Jiang et al. �8� also revealed that the work
done by the shear stress at the unperturbed free surface is
essential to cause the inertialess interfacial instability.

Linear stability analyses of falling films with more than
two layers have also been performed. Akhtaruzzaman et al.
�9� first investigated the long-wavelength motion of a three-
layer system. Then Wang et al. �10� adopted the long-wave
asymptotic method of Yih �5� and identified the long-wave
instability of the three-layer system. They also studied a five-
layered film flow and showed that a downward step decrease
in viscosity across an interface makes the five-layered system
unstable for any small Reynolds number. For a three-layer
system, Weinstein and Kurz �11� furthermore identified an
inertialess long-wave instability when the middle-layer vis-
cosity or density is smaller than those of the adjacent layers.
Weinstein and Chen �12� later studied large growth rate in-
stabilities in three-layer flows at zero Reynolds number.
They found that the long-wavelength inertialess interfacial
instability of Weinstein and Kurz �11� persists in the finite-
wavelength domain in the form of a pair of waves with
nearly complex conjugate wave speeds. These linear instabil-
ity analyses for multiple layers all showed that the number of
unstable modes is generally equal to the number of interfaces
�including the free surface� in the problem.

The spatiotemporal instability analyses of these multilayer
film flows are, in contrast, very few. For a single-layer falling
film, the absolute and convective instability has been thor-
oughly studied by Brevdo et al. �13�. They used the full*hu_jun@iapcm.ac.cn
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linearized Navier-Stokes equations to investigate the charac-
teristics of the absolute or convective instability through the
exact Briggs-Bers collision criterion. They explored a large
region of the parameter space and pointed out that the one-
layer film flow is convectively unstable, which agrees with
all performed experiments. They further studied the proper-
ties of spatially amplifying waves and found results in com-
plete agreement with the experiments performed by Liu et al.
�14,15�. Recently Hu et al. �7� performed the first spatiotem-
poral study in a multilayer film flow. They investigated the
absolute and convective properties of the interfacial instabil-
ity of the two-layer film flow by using the Briggs-Bers col-
lision criterion. Under the zero-Reynolds-number and zero-
surface-tension approximation, the transition from
convective �CI� to absolute instability �AI� has been detected
at small incline angle. Furthermore, the AI/CI boundary
curves show that smaller viscous ratios make the two-layer
film flow absolutely unstable at smaller density ratios, and
that the minimum critical density ratio occurs at moderate
depth ratio. In the large region of the parameter space where
the two-layer film flow is convectively unstable, both long
and short waves with different downstream velocities have
been detected.

In this paper, we study the effect of inertia on the tempo-
ral and spatiotemporal instabilities of the two-layer film flow.
The full system of linear stability equations is solved by a
Chebyshev collocation method �Sec. II�. The results of the
linear temporal approach are presented in Sec. III: the effects
of inertia and density stratification on the onset of both in-
terface and surface modes are characterized for two situa-
tions with different depth and viscous ratios. We then study
the spatiotemporal nature �absolute or convective� of the in-
stability of the two-layer film flow. The properties of the
convective instabilities that prevail in the two-layer film flow
are first determined �Sec. IV�. A transition from convective
to absolute instability is, however, detected for small inclina-
tions of the plate, and the corresponding boundary curves are
calculated for increasing inertia and for various depth, den-
sity, and viscosity ratios �Sec. V�. Finally, Sec. VI is devoted
to the study of the properties of the spatially amplifying
waves in the region of parameters where the instability is
convective.

II. FORMULATION

We consider a two-dimensional gravity-driven laminar
flow of two liquid layers down an inclined flat plate tilted at
an angle � to the horizontal �Fig. 1�. The two layers have
different thicknesses di, densities �i, and dynamical viscosi-
ties �i �the subscript i=1,2 denotes the lower and upper
fluids, respectively�.

For undisturbed two-layer falling films, the integral aver-
age streamwise velocity ua driven by the g sin � component
of gravity along the plate can be derived as

ua =
�1g sin � d1

2

K�1
, �1�

where

K = � 1 + �

�� �
2 + �2 + �3

3m� + � 1
3 + �

2�� ,

and
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�2

�1
, m =

�2

�1

represent the ratios of depths, densities, and dynamical vis-
cosities, respectively �upper layer to lower layer�.

The dimensionless governing equations are
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where i=1,2 and �=�2 /�x2+�2 /�y2. Here the pressures p̃i in
the two layers are nondimensionalized as pi= �p̃i− p̃0� /�iua

2.
The characteristic length is the height of the lower layer d1
and the characteristic velocity is the average velocity ua. The
Reynolds numbers and the Froude number which are in-
volved in the equations are defined as

Re = R1 =
�1uad1

�1
, R2 =

�

m
R1 =

�2uad1

�2
, Fr =

ua

�gd1�1/2 ,

�3�

so that K Fr2=R1 sin �. Thus, only one Reynolds number is
needed, which we choose to be Re. The basic dimensionless
streamwise velocity U1,U2 and pressure P1,P2 solutions of
the system �2a�–�2c� are given by
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FIG. 1. Schematic representation of the two-layer falling
films.
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U1�y� = K�−
y2

2
+ �1 + ���y�, 0 � y � 1, �4a�

U2�y� = K�−
�
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y +
1

2
−

�
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��

m
� ,

1 � y � 1 + � , �4b�

P1�y� =
cos �

Fr2 �1 + �� − y�, 0 � y � 1, �4c�

P2�y� =
cos �

Fr2 �1 + � − y�, 1 � y � 1 + � . �4d�

Due to the different nondimensionalization of the pressure in
the two layers, the equality of the pressures at the interface
yields P1=�P2 at y=1.

In the general case of a perturbed two-layer system �Fig.
1�, for which 	 and 
 are the dimensionless deviations from
the undisturbed free surface and interface positions, respec-
tively, the dimensionless boundary conditions corresponding
to no-slip and no-penetration boundary conditions along both
the inclined wall and the interface, and to one kinematic and
two dynamical boundary conditions along both the interface
and the free surface, are given by

u1 = v1 = 0 at y = 0, �5a�
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The disturbed flow can be decomposed into ui=Ui+ui�, vi
=vi�, and pi= Pi+ pi�, and the deviations 	 and 
 can be con-
sidered to be of the same order as the above perturbation
quantities. We can thus derive the linearized governing equa-
tions,
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where i=1,2, and the linearized boundary conditions,
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Now we assume that there are normal mode solutions of the
form
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ui��y,x,t� = ûi�y�ei�kx−�t�, vi��y,x,t� = v̂i�y�ei�kx−�t�,

pi��y,x,t� = p̂i�y�ei�kx−�t�, 	 = 	̂ei�kx−�t�, 
 = 
̂ei�kx−�t�.

�8�

Substituting them into the disturbed linearized governing
equations and the corresponding boundary conditions, then
eliminating the disturbed pressure p� and disturbed stream-
wise velocity u�, yields the linear stability equations �Orr-
Sommerfeld equations� for the two fluids,

�D2 − k2�2v̂i = iRi��Uik − ���D2 − k2� − D2Uik�v̂i, �9�

where D=d /dy.
The linear boundary conditions at the plate wall, the in-

terface, and the free surface become

v̂1 = Dv̂1 = 0 at y = 0, �10a�

Dv̂1 − Dv̂2 = ik�DU1 − DU2�
̂, v̂1 = v̂2 at y = 1,

�10b�

i�U1k − ��
̂ = v̂1 at y = 1, �10c�

�D2 + k2�v̂1 − iD2U1k
̂ = m��D2 + k2�v̂2 − iD2U2k
̂�

at y = 1, �10d�

m�D2 − 3k2 − iR2�U2k − ���Dv̂2 − �D2 − 3k2

− iR1�U1k − ���Dv̂1 + i��DU2 − DU1�R1kv̂2

− ��� − 1�K cot � − R1S1k2�k2
̂ = 0 at y = 1,

�10e�

i�U2k − ��	̂ = v̂2 at y = 1 + � , �10f�

�D2 + k2�v̂2 − iD2U2k	̂ = 0 at y = 1 + � , �10g�

m�D2 − 3k2 − iR2�U2k − ���Dv̂2

− ��K cot � + R1S2k2�k2	̂ = 0 at y = 1 + � .

�10h�

The two Orr-Sommerfeld �OS� equations are ordinary differ-
ential equations in terms of v̂i and can be regarded as a
two-point boundary value problem. If there exists a non-
trivial solution for the equations, a corresponding dispersion
relation D�k ,� ;Re,� ,� ,m ,S1 ,S2 ,��=0 should be satisfied,
and an eigenvalue problem has to be solved. Because it is
impossible to find the explicit analytical dispersion relation
if there is no further simplification such as long-wave ap-
proximation or zero-Reynolds-number approximation, the
dispersion relation has to be obtained numerically. In this
paper, similarly to the method of Chen �6� to study the situ-
ation �=1, i.e., without density stratification, the Chebyshev
collocation method �16� is used to discretize the equations,
and the QZ algorithm is utilized to solve the resulting gen-
eral eigenvalue problem. A mapping technique proposed by

Goussis and Pearlstein �17� is used in our code to map the
infinite spurious eigenvalues to a specified point in the com-
plex plane.

III. TEMPORAL INSTABILITY

The long-wave instability analysis of Kao �3,4� has al-
ready revealed that the two-layer film flow can be destabi-
lized by two different modes, a surface mode and an inter-
face mode. The surface mode is similar to that observed in
the one-layer film flow, and it is triggered above a critical
Reynolds number. The interface mode, on the contrary, is
triggered below a critical Reynolds number when the less
viscous layer is adjacent to the plate. This indicates that the
interface mode corresponds to an inertialess instability.
These two modes have already been studied in detail by Loe-
wenherz and Lawrence �2� and Chen �6� for equal-density
layers ��=1�. The main applications, however, are concerned
with layers of different densities. We thus choose to focus
our study in this section on the influence of the density strati-
fication on the triggering of both interface and free surface
modes. We consider the same inclination of the plate ��
=0.2� as in the studies of Loewenherz and Lawrence �2� and
Chen �6�, and assume zero interface and surface tensions
�S1=S2=0�.

In order to validate our code, we first plot the temporal
growth rates of the interface mode for different Reynolds
numbers in Fig. 2, similarly to what is shown in Figs. 7 and
13 of Chen �6� and with the same definitions of the growth
rate and the Reynolds number. The agreement is so good that
our curves could not be distinguished from Chen’s curves.
There is only one exception, for U1�1�Re=2, and we suspect
a mistake in the plot of this curve in Chen’s paper.

Chen �6� has shown that, for equal-density layers, inertia
has a significant influence on the instability of the two-layer
film flow. To see how this influence of inertia is modified by
a density stratification effect, we select two situations corre-
sponding to different depth and viscosity ratios, a first situa-
tion with �=0.75 and m=2.5 and a second situation with �
=1 and m=0.4. In the first situation, the less viscous fluid is
in the lower layer and in the second situation, it is in the
upper layer. Both the interface and surface modes are con-
sidered. The neutral curves obtained in these different cases
for different density ratios are plotted in Figs. 3 and 4.

The results for the interface mode are given in Fig. 3. In
the first situation �less viscous layer adjacent to the wall; Fig.
3�a��, there are two separate unstable regions for �=1 �equal-
density layers� corresponding to a long- and a short-wave
instability. These two instabilities exist at zero Reynolds
number in agreement with the inertialess results of Loewen-
herz and Lawrence �2�. For �=1, Chen �6� has shown that
inertia stabilizes the long-wave instability �decrease of the
growth rate� until it disappears above some critical value of
Re, whereas it destabilizes the short-wave instability �in-
crease of the growth rate�. With decrease of the density ratio,
it is found that the short-wave unstable region becomes
smaller, until it disappears at a moderate Reynolds number
when the density ratio is below a critical value, whereas the
long-wave instability is favored as it occurs in a larger range
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of Reynolds number values. With the increase of the density
ratio, the two long-wave and short-wave instability regions
are found to rapidly connect.

In the second situation �more viscous layer adjacent to the
wall; Fig. 3�b��, the unstable long- and short-wave regions
are connected. For �=1, Chen �6� has already shown that
inertia destabilizes both long and short waves, and that the
neutral curve delimits a stable region near the origin in the
Re-kr plane and then approaches Re=0 when kr→, indi-
cating that the flow is linearly stable for Re=0. This fact was
confirmed in the inertialess study of Hu et al. �7�. Our results
show that the decrease of the density ratio globally decreases
the size of the unstable region with, in particular, a strong
increase of the critical Reynolds number for the short-wave
instability. For the long-wave instability, however, the criti-
cal Reynolds number above which the instability occurs de-

creases when � is decreased. If we now focus on the region
with small inertia, we see that, compared to the case �=1 for
which the neutral curve decreases asymptotically to Re=0 as
kr is increased, for �=0.95 there exists a nonzero critical
Reynolds number below which the flow is linearly stable, for
any value of kr, whereas for �=1.05 the neutral curve inter-
sects the Re=0 axis. These results indicate that, when the
density ratio is above 1, a short-wave instability exists with-
out the need for the destabilization by inertia. On the con-
trary, when the density ratio is below 1, inertia is necessary
to trigger the short-wave interfacial instability. Finally, from
the results shown in Figs. 3�a� and 3�b�, we can conclude that
it is not possible to stabilize both the short- and the long-
wave interfacial instability simultaneously by changing the
density ratio. Nevertheless, the use of density ratios smaller
than 1 allows one to obtain Re regions where the two-layer
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FIG. 2. Normalized temporal growth rates of the interface mode
for different Reynolds numbers Re for �a� �=0.75, m=2.5 and �b�
�=1, m=0.4. Above each curve, a figure indicates the correspond-
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�=0.2.

kr

R
e c

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

S

U

U

0.8

0.8

1.0

1.05

0.95
0.9

0.95

0.85

kr

R
e c

0 2 4 6 8
0

4

8

12

16

20

24

S

1.05

1

0.95

0.9

0.85

0.8
U

(b)

(a)
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flow is stable with respect to the interface mode for all wave-
lengths: for m=2.5 �less viscous layer adjacent to the wall�,
this region is located above a critical Reynolds number,
whereas for m=0.4 �more viscous layer adjacent to the wall�,
it is located below a critical Reynolds number.

The results for the surface mode are given in Fig. 4. In
both situations �=0.75 and m=2.5 �Fig. 4�a�� and �=1 and
m=0.4 �Fig. 4�b��, the instability is triggered above a critical
Reynolds number which increases with kr, and the decrease
of the density ratio leads to the increase of this critical Rey-
nolds number, indicating that more inertia is needed to trig-
ger the surface mode instability. Nevertheless, the influence
of the density ratio on the thresholds of the surface mode

instability is rather weak, particularly in the long-wave re-
gion which is the more unstable.

IV. SPATIOTEMPORAL INSTABILITY

Basically, when an amplifying wave packet is convected
away from its local position, the wave packet would be said
to be convectively unstable �18–21�. If otherwise the ampli-
fication can be observed locally, the wave packet would be
said to be absolutely unstable. Generally, the absolute or con-
vective nature of the instability is determined by the sign of
the absolute growth rate �0i=Im���k0�� defined at the saddle
point k0 of the dispersion relation, i.e., when 	d� /dk	k0

=0. In
these expressions, k is a complex wave number and � is a
complex frequency. If the absolute growth rate �0i is greater
than zero �lower than zero�, the flow is said to be absolutely
�convectively� unstable. But it should be noticed that the
saddle point k0 used to identify the AI/CI must satisfy the
Briggs-Bers collision criterion, i.e., the saddle point must be
a pinch point produced by two distinct spatial branches of
solutions of the dispersion relation kn

����, coming, respec-
tively, from the upper and lower half k planes, and com-
monly referred to as upstream and downstream branches.

In order to clearly investigate the characteristics of the
absolutely or convectively unstable two-layer flow, it is nec-
essary to study the response of the flow to a localized distur-
bance along an arbitrary fixed spatiotemporal ray, V=x / t, as
t→. This is equivalent to analyzing how the response
evolves in a reference frame moving at the velocity V. If we
introduce the Doppler-shifted frequency �v=�−Vk and use
kv=k, the dispersion relation in the moving coordinate sys-
tem will be

Dv�kv,�v� = D�kv,�v + Vkv� = 0. �11�

Because d�v /dkv=0, the saddle point k̃ will take place at

D�k̃,�̃� = 0 and
d�

dk
�k̃,�̃� = V , �12�

and then the absolute growth rate in the moving frame is

obtained at k0
v= k̃ through

�0
v = �̃ − Vk̃ . �13�

Here also, the saddle point k̃ obtained from �12� must satisfy
the Briggs-Bers collision criterion mentioned above. Obvi-
ously, the local growth rate for V=0 is just the absolute
growth rate.

Still for the same inclination of the plate ��=0.2�, we will
consider the case where the less viscous layer is adjacent to
the wall �m=2.5�1, �=0.75�. In this case, we have seen in
the previous section that the surface mode instability occurs
above a critical Reynolds number whereas the interface
mode instability occurs below a critical Reynolds number in
the long-wave region and is observable in the finite-wave
region for large enough density ratios. In order to study the
spatiotemporal properties of these instabilities, we choose a
moderate value of the Reynolds number, Re=8, for which all
these instabilities are effective. Our study will mainly focus
on the density stratification effect.

kr

R
e c

0 0.2 0.4 0.6
0

10

20

30

40

50

S

1.1

1.0

0.9

0.8

U

kr

R
e c

0 0.25 0.5 0.75 1 1.25
0

5

10

15

20

25

30

S

1.1

1.0

0.9

0.8

U

(b)

(a)

FIG. 4. Neutral curves of the surface mode for different density
ratios � in the Re-kr plane for �a� �=0.75, m=2.5 and �b� �=1, m
=0.4. For each neutral curve the corresponding density ratio is in-
dicated. The other parameters are S1=S2=0 and �=0.2.

HU et al. PHYSICAL REVIEW E 77, 026302 �2008�

026302-6



For the interface mode �Fig. 5� as well as the surface
mode �Fig. 6�, we give the growth rates �i

v as functions of
the ray velocity V and the corresponding loci of the saddle
points in the complex k plane. Our results are obtained by
first finding all kinds of saddle points for an arbitrary ray
velocity �such as V=1.3 for the interface mode�, then using
continuation to find the branches of those saddle points when
V is varied by an iteration method �Deissler �22�; Yin et al.
�23��.

For the interface mode �Fig. 5�, it is shown that there exist
two unstable branches of saddle points. These two unstable
branches occur entirely for strictly positive values of the spa-
tiotemporal ray velocity �V�0�. The absolute growth rate in

the laboratory frame �given by the local growth rate at V
=0� is thus negative, indicating that the interfacial instability
is convective for the chosen parameters. The branch in the
left-hand side of the graphs corresponds to the long-wave
instability �let us denote it “branch I”�; the other branch cor-
responds to the short-wave instability and will be referred to
as “branch II.” The short-wave instability has the faster
downstream velocity, and its maximum growth rate occurs
near V=1.32. The long-wave instability has a slower down-
stream velocity. When the density ratio is 1.05, branch II has
a much larger growth rate than branch I. But with the de-
crease of the density ratio, the growth rate of branch I, al-
though small, remains almost constant in the domain around
V=1.16, whereas the growth rate of branch II decreases
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quickly, in agreement with the suppression of the short-wave
instability observed for smaller density ratios in Sec. III. Fur-
thermore, it is found that for ��1.05 the two branches in-
tersect at a certain ray velocity with a positive growth rate. A
transition between long- and short-wave instabilities can thus
be expected at this intersection point. To confirm this transi-
tion, it is necessary to determine which one of these two
modes is the dominant mode of interfacial instability in the
vicinity of this point; this can also be done by using the
Briggs-Bers collision criterion.

We choose to study this transition for �=1.05. More in-
formation about this case is given in Fig. 7 through the plots
of the growth rate �i

v, the oscillatory frequency �r
v, the local

spatial amplification rate −ki
v, and the local spatial wave

number kr
v as a function of the ray velocity V. We see that the

intersection point is located at V=1.272 and that the evolu-
tion of the characteristics is clearly different for the two

branches. For �=1.05, we thus perform the same two pinch-
ing processes as in the papers of Brevdo et al. �13� and Hu
et al. �7�, for V=1.27 and 1.274, slightly below and above
the value of V at the intersection point �Figs. 8 and 9�. For
V=1.27 �Fig. 8�, it is found that a Briggs-Bers collision oc-
curs at small wave number �kI= �0.93,−0.15�� when the
growth rate is decreased from �i=0.004 to �i=0.002 76.
Then, when the growth rate is decreased from �i=0.002 76
to �i=2.5�10−5, another collision occurs, but now the
saddle point �found at a larger wave number kII� does not
satisfy the Briggs-Bers collision criterion. From these colli-
sion analyses, we can conclude that branch I dominates the
spatiotemporal growth when V�1.272, i.e., when the mov-
ing frame velocity is smaller than that of the intersection
point. For V=1.274 �Fig. 9�, through a similar analysis, it is
found that a Briggs-Bers collision occurs at finite wave num-
ber �kII= �2.53,−1.69��, while a non-Briggs-Bers collision
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occurs at small wave number �kI= �0.95,−0.17��, which
shows that the spatiotemporal growth is dominated by
branch II when V�1.272. Considering Fig. 7�a�, we can
conclude that the Briggs-Bers collision criterion is satisfied
at the saddle points corresponding to the parts of the
branches which have the larger growth rate. The intersection
point at V=1.272 is then a real transition point which can be
used to distinguish the long- and short-wave instabilities for
the interface mode of the two-layer film flow. Furthermore,
as can be seen clearly in Figs. 7�b�–7�d�, the oscillatory fre-
quency, local spatial amplification rate, and local spatial
wave number are found to jump from branch I to branch II at
this transition point, which indicates a discontinuity for these
quantities.

For the surface mode �Fig. 6�, it is shown that there exists
only one unstable branch of saddle points. This branch cor-

responds to a surface wave instability which has a larger
downstream velocity than the interfacial wave instabilities,
and is thus also convective. The wavelengths of this surface
instability are also much larger than those obtained for both
branch I and branch II of the interfacial instability. With the
decrease of the density ratio, the surface wave instability has
smaller growth rates. Nevertheless, from the results of Sec.
III, we cannot expect that a small density ratio will com-
pletely suppress the surface wave instability.

V. ABSOLUTE TO CONVECTIVE
INSTABILITY TRANSITION

Due to the presence of the absolute Rayleigh-Taylor in-
stability for �=0, it can be expected that the instability due to
the interface will become absolutely unstable when the in-
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cline angle approaches zero and the upper layer has the
higher density ���1�. This transition from convective to
absolute instability has already been detected by Hu et al. �7�
in his inertialess stability study of the two-layer film flow.
Here, we consider this transition in the more practical situa-
tion where the inertia effect is taken into account. The results
are shown in Fig. 10 where the boundary curves between
absolute and convective instability are plotted for different
values of the parameters.

We first consider a fixed value of the plate inclination,
�=0.02, and give the boundary curves in the �-� plane for
different values of Re and m=2.5 �Fig. 10�a�� and in the
Re-� plane for different values of m and �=0.75 �Fig. 10�b��.
From Fig. 10�a�, we see that there is a minimum for the
critical density ratio and that this minimum occurs at a mod-
erate depth ratio. With the increase of the Reynolds number

�0�Re�3�, the minimum critical density ratio increases
and the absolutely unstable region decreases in size, indicat-
ing that it is more difficult to make the two-layer system
absolutely unstable. The depth ratio � at the minimum of �
also depends on Re and evolves from 1 to 0.75 when Re is
changed from 0 to 3. More details on the influence of Re are
given in Fig. 10�b� for a fixed depth ratio �=0.75. From this
figure, we see that the absolutely unstable region finally dis-
appears above a limit Reynolds number, indicating thus that
the flow can only be convectively unstable beyond this limit
value of Re. This limit value is rather small �Re around 4 for
m=2.5� and varies a little with the viscosity ratio m. The
general influence of m on the boundary curves is also de-
picted in Fig. 10�b�: the main effect is that, for small Rey-
nolds numbers, the decrease of the viscosity ratio will allow
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the flow to become absolutely unstable at a smaller density
ratio.

The effect of the incline angle � on the boundary curves is
then presented in Figs. 10�c� and 10�d� for fixed viscosity
ratio m=2.5 and fixed depth ratio �=0.75. As the Reynolds
number Re contains � �more precisely sin���� in its definition
�see Eqs. �3� and �1��, it is preferable to introduce the Galileo
number Ga=Re /sin � to quantify the inertia effect when the
incline angle is modified. Figure 10�c� depicts the boundary
curves in the Ga-� plane for different incline angles � and
Fig. 10�d� the boundary curves in the �-� plane for different
Galileo numbers Ga. From Fig. 10�c�, it can be seen that,
at constant � �similarly to what is found in Fig. 10�b� for
�=0.02�, there exists a limit Galileo number above which the
flow can only be convectively unstable. With the increase of

the incline angle, this limit value strongly decreases and the
region of absolute instability is reduced toward smaller val-
ues of Ga and larger values of �. Finally, Fig. 10�d� shows
that, at fixed Galileo number, there also exists a limit incline
angle above which the flow can only be convectively un-
stable. With the increase of the Galileo number, the limit
incline angle decreases and this limit value is reached at a
smaller density ratio. Note that, when the incline angle is
decreased, the critical density ratio approaches 1 for all Ga-
lileo numbers, in agreement with the characteristics of the
Rayleigh-Taylor instability which occurs at �=0.

VI. SPATIALLY AMPLIFYING WAVES

In the previous sections, we have learned that, in most of
the parameter space, the two-layer film flow becomes un-

γ

δ

1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Re=0
Re=1
Re=2
Re=3

CI

AI

γ

R
e

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

m=2.5
m=1.5
m=0.8
m=0.4

AI

CI

γ

G
a

1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

θ=0.02
θ=0.03
θ=0.04

AI

CI

γ

θ

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.02

0.04

0.06

0.08

0.1

Ga=0
Ga=20
Ga=40
Ga=60

AI

CI

(b)

(a) (c)

(d)

FIG. 10. Boundary curves between absolute and convective instability: �a� �-� curves for �=0.02, m=2.5, and different Reynolds
numbers Re, �b� Re-� curves for �=0.02, �=0.75, and different viscosity ratios m, �c� Ga-� curves for m=2.5, �=0.75, and different incline
angles �, and �d� �-� curves for m=2.5, �=0.75, and different Galileo numbers Ga. The other parameters are S1=S2=0.

LINEAR TEMPORAL AND SPATIOTEMPORAL STABILITY… PHYSICAL REVIEW E 77, 026302 �2008�

026302-11



stable only in a convective way, with the exception of a
region at small incline angle and small inertia effect where
absolute instability can occur. In a large region of the param-
eter space, the unstable perturbations in the two-layer film
flow are thus convected downstream. To get more informa-
tion on these convected waves, it is interesting to study the
spatial amplification of the linear waves generated by a spa-
tially localized harmonic forcing with small amplitude. In
fact, the response to a periodic forcing, usually referred to as
a signaling problem, is determined by a spatial instability
analysis which can be formulated as

D�k,�r� = 0. �14�

The spatial growth rates −ki and spatial wave numbers kr are
computed as functions of the forcing angular frequency �r

by an iteration method. From the spatial wave number kr,
we can also calculate the phase speed c=�r /kr, which is
a quantity easier to measure in experiments. As in Sec. III,
we successively consider the interface mode and the surface
mode, and for each mode select the same two situations
��=0.75, m=2.5 and �=1, m=0.4� for Re=8.

The results for the interface mode are first presented in
Figs. 11 and 12. The variations of the spatial growth rates −ki
with the forcing frequency �r for different density ratios are
shown in Fig. 11. In the first situation �less viscous layer
adjacent to the wall; Fig. 11�a���, there exist both low fre-
quency and high frequency spatially amplifying waves,
whereas in the second situation �more viscous layer adjacent
to the wall �Fig. 11�b��, there exist only high-frequency spa-
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tially amplifying waves, similar similarity to what is ob-
tained in the temporal instability analysis �Sec. III� in terms
of temporal growth rate. The decrease of the density ratio is
found to decrease the spatial growth rate: this influence is
weak for small forcing frequency, but particularly strong at
the level of the peaks at moderate forcing frequency in con-
nection with the evolutions of the temporal short-wave insta-
bility observed in Figs. 3�a� and 3�b�. The phase speeds c of
these spatial waves are then shown as a function of the forc-
ing frequency �r in Fig. 12. In the first situation ��=0.75 and
m=2.5�, the phase speed presents a minimum at the level of
the long-wave instability, then increases with the increase of
�r in the region of the short-wave instability, and finally
tends to a constant phase speed �Fig. 12�a��. In the second
situation ��=1 and m=0.4�, in the region affected by the

short-wave instability ��r�1.2�, we find a small increase of
the phase speed toward a maximum at the level of the growth
rate peak, before a clear decrease toward an asymptotic con-
stant phase speed �Fig. 12�b��. The phase speeds are some-
what smaller in the second situation. The influence of the
density ratio on the phase speed is rather weak and not easy
to characterize.

The evolutions of the spatial growth rates −ki and phase
speeds c with the forcing phase frequency �r are then plotted
for the surface mode in Figs. 13 and 14, respectively. It is
found that both situations studied ��=0.75, m=2.5 and �
=1, m=0.4� give the same type of evolution for −ki as well
as for c. A single positive peak at small forcing frequency is
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obtained for the spatial growth rate �Figs. 13�a� and 13�b��,
indicating that the spatially amplifying waves are long
waves. The peak intensity decreases with the decrease of the
density ratio �, but this influence is smaller than for the
interface short-wave modes. The phase speed of these ampli-
fying waves continuously decreases with the increase of �r,
first quite quickly and then more slowly, and the influence of
� on this evolution is very small �Figs. 14�a� and 14�b��.
Finally, it is interesting to note that the phase speeds obtained
for these long-wave surface modes are clearly stronger than
those obtained for the interface modes.

VII. CONCLUSION

The temporal and spatiotemporal instabilities occurring in
two-layer falling films have been investigated by using the
Chebyshev collocation method to solve the full system of
linear stability equations. The different effects involved �in-
ertia, density and viscosity stratification, depth ratio, inclina-
tion of the plate� have been taken into account; only the
stabilizing influence of interface and surface tensions has not
been considered. The neutral curves Re�k� for both the sur-
face mode and the interface mode of instability have been
obtained by a temporal stability analysis. Long- and short-
wave interfacial instabilities are detected, which also exist, as
expected, for Re=0 �inertialess instability�, whereas a long-
wave surface instability is found above a critical Reynolds
number. The decrease of the density ratio always make the
surface mode and the short-wave interface mode more stable;
it can even make the short-wave inertialess instability disap-
pear. Moreover, when the less viscous layer is in the region
next to the wall, a small enough density ratio can completely
suppress the short-wave instability of the interface mode, so
that there exist only long-wave instabilities of the surface
mode and interface mode. On the contrary, the decrease of
the density ratio favors the long-wave interfacial instability

which exists in a larger range of Reynolds number values.
The spatiotemporal analysis shows that the instability is

convective for incline angles that are not too small, like �
=0.2. The study of the local growth rates of the spatiotem-
poral instability as a function of the ray velocity V shows that
there is a transition between long- and short-wave convective
instabilities. Accordingly, there exists a jump for the local
oscillatory frequency, spatial amplification rate, and spatial
wave number due to this transition.

Due to the existence of the absolute Rayleigh-Taylor in-
stability for ��0 and �=0, a transition from convective to
absolute instability has been detected at small incline angles.
From the absolute and convective instability boundary
curves, it is found that there exist limit values of the Rey-
nolds number �for a fixed small incline angle� and of the
incline angle �for a fixed Galileo number� above which the
two-layer film flow can only be convectively unstable.

Finally, a spatial instability analysis has been performed
in order to characterize the spatial amplification of the linear
waves in the convectively unstable region of the parameter
space. The interface waves generated by a high-frequency
forcing can have large growth rates, but these growth rates
strongly diminish when the density ratio is decreased, so that
these waves eventually die out for small enough density ra-
tios. On the contrary, the interface or surface waves gener-
ated by a low-frequency forcing have smaller growth rates,
but these growth rates are only slightly influenced by varia-
tions of the density ratio. Note finally that the surface waves
have larger phase speeds than the interface waves.
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