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The main objective of this work is to study experimentally the primary instability of
non-Newtonian film flows down an inclined plane. We focus on low-concentration
shear-thinning aqueous solutions obeying the Carreau law. The experimental study
essentially consists of measuring wavelengths in marginal conditions, which yields
the primary stability threshold for a given slope. The experimental results for neutral
curves presented in the (Re, fc) and (Re, k) planes (where fc is the driving frequency,
k is the wavenumber and Re is the Reynolds number) are in good agreement with
the numerical results obtained by a resolution of the generalized Orr–Sommerfeld
equation. The long-wave asymptotic extension of our results is consistent with former
theoretical predictions of the critical Reynolds number. This is the first experimental
evidence of the destabilizing effect of the shear-thinning behaviour in comparison
with the Newtonian case: the critical Reynolds number is smaller, and the ratio
between the critical wave celerity and the flow velocity at the free surface is larger.

Key words: instability, non-Newtonian flows, thin films

1. Introduction

Shallow-water flows on a slope featuring a free surface often present an unstable
motion, characterized by various types of surface waves. These waves may be
complex, depending on inertia, inclination or fluid properties. If the waves that
are triggered in such flows are initially quasiplane with large wavelength, farther

† Email address for correspondence: simon.dagois-bohy@univ-lyon1.fr
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downstream they grow in amplitude and quickly evolve towards a nonlinear regime.
In this paper, an experimental study is performed to investigate the stability of such
films when the fluid is shear-thinning, a relevant configuration for many geophysical
flows such as debris flows or mud surge waves.

In the case of Newtonian fluids, the onset of such waves is well understood since
the early linear theoretical studies of Benjamin (1957) and Yih (1963), who showed
that the critical Reynolds number for the onset of the instabilities only depends on
the slope angle, and is proportional to its cotangent. The same value is obtained with
shallow-water or Orr–Sommerfeld approaches, as long as the long-wave hypothesis is
used. This cotangent dependence was later confirmed experimentally by Liu, Paul &
Gollub (1993).

Smith (1990) proposed a phenomenological approach in order to understand the
physical mechanisms for the long-wave instability in Newtonian thin liquid films.
(i) He showed that the disturbance of the free surface is the trigger point of the
shear-induced instability, which is consistent, in shallow-water models, with the
existence of a kinematic wave that is exclusively governed by the conservation of
mass (Kalliadasis et al. 2011; Whitham 2011). (ii) He investigated the effect of the
stabilizing and destabilizing terms in the growth phase of the instability, which, at the
leading orders in the long-wave expansion theory, correspond to the responses of the
film to the variation in momentum through dynamic waves (Kalliadasis et al. 2011).
(iii) He wrote the mass balance equation in the wave framework and showed that, at
the linear threshold, the waves travel two times faster than the flow velocity at the
free surface, this latter point being a key ingredient in this inertia-driven instability.

In the literature, most experimental studies on waves down an incline are based on
a Newtonian fluid model (Liu et al. 1993; Vlachogiannis et al. 2010; Georgantaki
et al. 2011). However, in many engineering applications (coating processes in paint,
paper, food, plastic, etc. industries) or geophysical phenomena (glaciers, mud and
debris flows), the liquids involved present more complex rheological behaviours
(Benchabane & Bekkour 2008; Chambon, Ghemmour & Laigle 2009; Jouvet et al.
2011). In particular, the viscoplastic rheology was shown to describe quite well the
global behaviour of the materials involved in debris flows (Huang & Garcia 1998;
Chambon et al. 2009). Most viscoplastic liquids are not ideal Bingham liquids and
have shear-thinning properties in addition to the yield stress. In this study, we chose
to focus on purely shear-thinning fluids and leave the yield stress out, for the sake
of simplicity. This should be seen as a first step towards understanding the physics
of complex fluids. Moreover, this simplified rheology could already be sufficient to
describe some real geological materials (Jeong 2010).

Several models are available to describe the rheology of shear-thinning fluids,
among which is the power-law model. Under the shallow-water approximation, the
stability of a film of a power-law fluid flowing down an inclined plane has been
studied theoretically by several authors (Ng & Mei 1994; Dandapat & Mukhopadhyay
2001; Amaouche, Djema & Bourdache 2009; Fernández-Nieto, Noble & Vila 2010).
However, this rheology yields an infinite viscosity at zero shear rate (i.e. at the
surface), which demands a careful handling in theoretical computation of the critical
Reynolds number (Noble & Vila 2013). Moreover, this rheology is sometimes not
physically accurate, for example in the case of polymer solutions and melts, whose
viscosities always remain finite.

To solve this issue, Ruyer-Quil, Chakraborty & Dandapat (2012) recently modified
the power-law model by introducing a Newtonian plateau at low values of the shear
rate, and they provided asymptotic expressions for the critical Reynolds number under
the long-wave expansion.
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It is possible, however, to describe such behaviour without introducing discontinuities
by using a Carreau law (see § 2), and this approach is preferred by many authors,
notably in the polymer and coating communities (Weinstein 1990; Rodd, Dunstan
& Boger 2000; Escudier et al. 2001; Benchabane & Bekkour 2008). Rousset et al.
(2007) and Millet et al. (2008) numerically studied flows of Carreau fluids down
an incline. They investigated the influence of the Carreau law parameters on the
modification of the stability threshold, using temporal stability analysis based on the
Orr–Sommerfeld equation. Following the same approach as Smith (1990), they found
that (i) the critical Reynolds number is lower than that for a Newtonian fluid having
a viscosity equal to the zero-shear-rate viscosity of the Carreau fluid and (ii) the
critical wave celerity, normalized by the surface velocity, is larger. They concluded
that shear-thinning rheology has a destabilizing effect.

In contrast, on the experimental side, the literature is less abundant. The first
experimental visualization record of surface waves in Newtonian falling films was
the paper by Kapitza & Kapitza (1949). However, it was not until the work of Liu
et al. (1993) that the theoretical predictions of Benjamin (1957) and Yih (1963) were
confirmed experimentally. In particular, Liu et al. (1993) confirmed the convective
nature of this instability, which has the practical consequence of making it extremely
sensitive to external noise.

There is very little work on flows of non-Newtonian fluids down a slope, apart from
three notable exceptions. First, Coussot (1994) investigated the stability of mud flows
down an incline. Later, Forterre & Pouliquen (2003) adapted the set-up of Liu et al.
(1993) to investigate this instability in the different, but related, context of granular
flows. Finally, Chambon, Ghemmour & Naaim (2014) recently developed an original
experimental configuration in which a viscoplastic surge is stationary in the laboratory
frame.

In this paper, we present an experimental study on the stability of gravity-driven
film flows when the fluid is shear-thinning. In the next section, we will describe our
experimental set-up, which is similar to the one used by Liu et al. (1993). We will
then present results obtained with Newtonian fluid and compare them favourably with
the literature. Finally, we will present our results obtained for shear-thinning fluids,
and we will compare them with models and numerical simulations.

2. Experimental set-up

2.1. Description
The experiments were carried out in an inclined channel of length 2 m and width
Wch = 46 cm, in which a flowing film was perturbed upstream, and the perturbation
was recorded further downstream. The channel ended in a reservoir, and with a PCM
EcoMoineauTM progressing cavity pump, the fluid was pumped up to a manifold
at the entrance of the channel (filters were used to tranquilize the flow). The flow
rate q was measured with a Rosemount electromagnetic flow meter. To allow optical
measurements (see below), the channel base was chosen transparent (glass).

The inclination angle of the channel, φ, was adjustable thanks to a telescopic
motorized leg holding the end of the channel, from 0◦ up to 15◦ with a precision of
0.5◦. A sketch of the set-up is shown in figure 1.

We chose to study primary waves in the linear regime, for which the disturbances
are almost two-dimensional and sinusoidal, and their amplitude is as small as possible.
To impose such perturbations with controlled frequency f and amplitude A, we used
a vibration device (B&K 4809) linked to a blade plunged in the upstream manifold.
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Frequency f
Amplitude A

Flow rate q
Pump

Laser

CCD
sensor

FIGURE 1. Sketch of the experimental apparatus.

This system allowed us to produce quasiplane waves with an amplitude A smaller
than one millimetre, and a wavelength λ of a few centimetres. The perturbations are
sinusoidal close to the channel entrance, but as they grow downstream, they evolve
into complex solitary waves. This nonlinear regime has been the subject of many other
studies (see, e.g., Denner et al. 2016), but it is not in the scope of the present study.
Instead, we focused on the onset of the instability, and all our measurements were
made close to the entrance manifold, i.e. still in the linear regime.

2.2. Detection methods
We used two detection methods to monitor the propagation of the perturbation, a local
one (point measurement) and a global one (surface measurement).

The local method was the same technique as used by Liu et al. (1993): a laser
beam was shot perpendicularly through the channel and was deflected by the liquid–air
interface. A position sensitive device (PSD) recorded the laser beam position, from
which the local slope of the free surface, dh/dx, was inferred. To prevent the signals
from being affected by non-planar effects (e.g. induced by the walls), we always made
sure that we used this method at the centreline of the channel. We repeated this
measurement at regularly spaced positions, and we measured the signal amplitude (by
synchronous demodulation) and the phase shift with a reference signal (the vibration
device generating the waves). From these measurements we were able to extract the
amplitude variation and the wavelength of the surface waves.

We also used free-surface synthetic schlieren (FS-SS) to test for wave planarity.
This technique, proposed by Moisy, Rabaud & Salsac (2009), allows an instant global
measurement of the free-surface slope. A pattern of computer-generated random dots
is placed under the channel, approximately 70 cm below the free surface. A CCD
camera (resolution 1280 × 1024) located 170 cm above it records its image. When
the liquid surface is modified by the perturbation, the image is different from the
original pattern, and by tracking the apparent displacement of the dots with standard
PIV software (DaVis, LaVision), we are able to reconstruct the free-surface slope
over a 40 cm long domain, located roughly 40 cm from the entrance manifold. The
decay rate α and wavenumber k are then determined by fitting the surface slope
measurements to the analytical expression

dh
dx
∝ e−αx cos(kx− 2πft). (2.1)
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FIGURE 2. (a) Normalized surface slope versus position for the FS-SS method at a given
time, and for the corresponding local measurements (60 % vol. water–glycerol solution,
φ = 1◦, Re= 23, f = 15 Hz). (b) Rheological law for fluids 1, 2 and 3 (from bottom to
top). Solid lines: fit with a Carreau law. Black points and rectangles: shear rates in the
experiments (see § 4).

Figure 2(a) compares the results obtained with the two techniques. The good
agreement with (2.1) gives us confidence in both techniques. In practice, we mostly
used the local detection, first because the linear regime is located near the channel
entrance, hardly accessible to the FS-SS technique, and second because it is much
simpler to use.

2.3. Fluids
A 60 % vol. water–glycerol mixture was used for its Newtonian properties, whereas
mixed solutions of both carboxymethylcellulose (CMC, E466) and xanthan gum
(E415) were used as shear-thinning fluids.

The rheology of the non-Newtonian fluids is well described by a four-parameter
Carreau inelastic model,

η− η∞

η0 − η∞
=

[
1+

(
γ̇

γ̇c

)2
](n−1)/2

, (2.2)

where η0 and η∞ are the limit Newtonian viscosities at zero and infinite shear rate
respectively, γ̇c is the critical shear rate separating the Newtonian and shear-thinning
behaviours, n is the power-law index, η is the local viscosity and γ̇ is the local shear
rate.

A RheomatTM RM115-A Couette rheometer (Lamy Rheology, 10 mN m torque)
was used for the main flow curve determination. However, because most commercial
rheometers are torque-sensitive, it is very difficult to precisely determine the
zero-shear-rate viscosity, yet this is crucial for the characterization of flows featuring
a free surface. We then implemented an electro-capillary technique to measure, when
possible, the viscosity and surface tension of the fluids at values of the shear rate
as small as 10−3 s−1. This technique and the measurements are fully described in
Allouche et al. (2015). The rheological parameters for the Carreau law and physical
properties such as the density ρ and the surface tension σ of the three shear-thinning
fluids used are displayed in table 1 and their rheograms are plotted in figure 2(b).
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Shear-thinning η0 η∞ n γ̇c ρ σ

fluids (mPa s) (mPa s) (s−1) (kg m−3) (mN m−1)

1 4.43 0.05 0.79 2.23 981 48
2 8.41 0 0.88 77.80 993 45
3 15.80 0 0.80 74.10 1004 —
Newtonian fluid 11.7 — — — 1150 68.5

TABLE 1. The mechanical properties of the fluids used in the present study: Carreau
parameters, density and surface tension. Newtonian values were obtained from Takamura,
Fischer & Morrow (2012).

Based on this measured zero-shear-rate viscosity, we were able to define a Reynolds
number for each experiment as Re= ρq/Wchη0 (Rousset et al. 2007).

The first fluid used in this study was a xanthan gum solution at 0.008 wt%, whose
rheology had been characterized in Allouche et al. (2015) (fluid 1 in table 1). This
fluid exhibits a strong shear-thinning behaviour because its critical shear rate, γ̇c, is
low. For this fluid, γ̇c was reached even at very small inclination angles in our set-up.
On the contrary, the shear-thinning behaviour in CMC solutions occurs later, at higher
shear rates than we could reach in our set-up. We then decided to mix CMC and
xanthan gum in different proportions to obtain moderate shear-thinning fluids.

3. Experimental test with a Newtonian fluid

In this section, we present the results obtained with a Newtonian fluid. The goal
here is to compare these results with well-established results from the literature, in
order to evaluate the accuracy and limits of our set-up. The measurement of the
linear stability thresholds consisted of the following steps. At fixed slope φ, flow rate
q and frequency f , we measured the wavenumber k and the decay rate α (figure 2(a)
and (2.1)). We then repeated the measurement for different frequencies (keeping q
constant) to identify the cutoff frequency fc where the waves neither amplify nor
attenuate (α= 0), i.e. the marginal conditions. We repeated the procedure for different
flow rates (i.e. different Re), keeping φ constant.

Figure 3(a) shows the obtained fc(Re) at φ = 3.2◦. Like Liu et al. (1993), we find
that the cutoff frequency varies as follows:

fc ∝
(
Re− Reexp

c

)1/2
. (3.1)

From this, we could extract the critical Reynolds number, i.e. at zero frequency, by
fitting (3.1) to our data. Finally, we repeated this procedure at different inclination
angles, and we obtained the variation of Reexp

c with φ.
It should be noted that measurements at low frequencies are very difficult: the

perturbation becomes nonlinear over a distance shorter than the wavelength and
generates parasitic waves (Argyriadi, Serifi & Bontozoglou 2004). Moreover, the
experiment is very sensitive to external vibrations, in particular the pump rotation
speed. In practice, no measurement could be made below f ∼ 2 Hz.

We can now compare our experimental stability thresholds, shown in figure 3(b),
with the theoretical curve of Yih (1963), given by

Reth
c =

5
6 cot φ. (3.2)
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Our results with 60 wt% 
glycerin–water solution

FIGURE 3. (a) Neutral curve in the (Re, fc) plane for a Newtonian water–glycerol solution
at φ = 3.2◦. (b) Critical Reynolds number Rec as a function of the inclination angle. The
crosses represent the experimental results Reexp

c for water–glycerol solutions and the solid
line corresponds to the theoretical prediction Reth

c for an infinite channel (Yih 1963) (see
(3.2)). (c) The ratio Reexp

c /(R∗Reth
c ) as a function of φ, where R∗ is the correction factor

of Georgantaki et al. (2011).

We find that our results are in good agreement with the theory, although there is a
systematic shift of a few units above the theoretical curve. We interpret this shift
as an effect of the finite width. Indeed, equation (3.2) is obtained for the case
of Newtonian film flows of infinite width (Yih 1963). Vlachogiannis et al. (2010)
experimentally showed that the finite width of experimental channels stabilizes the
liquid film and increases the critical Reynolds number, which is consistent with what
we see in figure 3(b).

To further investigate the stabilizing effect of the channel width on our results,
we follow the analysis by Georgantaki et al. (2011). They quantified the deviation
from the theory R∗ = Reexp

c /Reth
c , which they found to be governed by surface tension

effects, and depend only on the Kapitsa number Ka = l2
c/l

2
v = σρ

1/3/g1/3η4/3 (where
g is the gravitational acceleration, lc is the capillary length and lv is the viscous
length). At large Ka, this deviation reaches a plateau that scales as R∗m ∼ lc/Wch, and
at small Ka, R∗ varies in first approximation as R∗= 1+ (Ka/2000)(R∗m− 1). We use
this expression to evaluate the deviation from theory, with R∗m = 1.6 and Ka = 127,
yielding a correction factor of R∗ = 1.04. Figure 3(c) shows the ratio Reexp

c /(R∗Reth
c )

as a function of the inclination angle for both our data (crosses) and the data of
Liu et al. (1993) (diamonds). We see that the ratio does not seem to vary with φ,
as expected from Georgantaki et al. (2011). That being said, their correction is not
sufficient to fully capture the deviation from the theory, both in our case and in the
case of Liu et al. (1993). This observed discrepancy could be due to the parameters
we used in our experiments. These parameters (large Wch, higher viscosity and low
Ka) are precisely in the range where R∗ is the hardest to evaluate. In fact, the data
of Georgantaki et al. (2011) are scarce in this range, and the linear fit we used to
evaluate R∗ could be wrong. A possible cause could be that at high viscosity, the
capillary effects might not be the dominant stabilizing mechanism anymore. In the
end, we conclude that a systematic stabilizing effect of the channel width is very
likely, and we will keep it in mind when dealing with the shear-thinning fluids.
However, this effect is small enough so that our experiment is able to capture the
correct instability behaviour of the fluids, as seen in figures 3(c) and 4(a).
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FIGURE 4. (a) Neutral curve in the (Re, fc) plane for the shear-thinning fluids. Solid
line: fit from (3.1). (b) Neutral curves in the (Re, k) plane. Solid lines: numerically
obtained neutral curves for the fluids (for fluid 3, σ was set to minimize the error in the
neutral curve). Coloured areas: range of numerical results corresponding to the 1φ= 0.5◦
uncertainty (except for fluid 1, where φ ∈ [0.25◦, 1◦]). (c) Wave celerity c to surface
velocity U0 ratio as a function of Re. Coloured solid lines: numerically obtained wave
celerity. The critical threshold values are reached numerically for k→ 0 (solid circles).
Dashed line: Newtonian limit c/U0= 2. Solid lines: power-law fluid limit c/U0= 1+ 1/n.

4. Primary instability in the shear-thinning case

Before presenting the experimental stability measurements for shear-thinning
fluids, we dedicate a few words to the numerical resolution of the Orr–Sommerfeld
equation with which they will be compared. In the study of Rousset et al. (2007),
a steady uniform flow is considered (flow rate q, channel width Wch, inclination
angle φ), and the linear stability equations are derived. These equations are set in
dimensionless form using the characteristic scalings one would find for a Newtonian
fluid of viscosity η0 (the zero-shear viscosity of the Carreau fluid): a length scale
ds = (η0q/ρgWch sin φ)1/3, a velocity scale vs = (q/Wchds) and a shear-rate scale
γ̇s = ds/vs. In particular, the dimensionless Carreau law is expressed as

η

η0
= I + (1− I)

[
1+

(
LΓ̇
)2
](n−1)/2

, (4.1)

with I = η∞/η0, L = q/Wchγ̇cd2
s and Γ̇ = γ̇Wchd2

s /q. Then, the perturbation growth
rates are numerically calculated, which eventually gives the neutral curve and the
critical Reynolds number. We want to emphasize that the parameter L has an important
impact on the numerical results: when L is too large, the numerical solution becomes
difficult, whereas when L is too small, the difference from a Newtonian fluid becomes
negligible. Because of this constraint, we chose to perform experiments at parameters
corresponding to acceptable values of L, i.e. for which the estimated typical shear rate
γ̇s was above the critical shear rate of the Carreau law γ̇c while staying of the same
order of magnitude, γ̇s & γ̇c. To achieve this, we operated each fluid at a chosen angle.
Small γ̇c required small angles, and we chose the following values: φ= 0.5◦ , φ= 3.5◦
and φ = 6.5◦ for fluids 1, 2 and 3 respectively. As we can see on the rheograms of
figure 2(b), the typical shear rates of our experiments satisfy our condition.

Our measurements followed the same protocol as described in the previous section:
we measured the stability threshold for different flow rates in order to deduce the
critical Reynolds number Rec. Figure 4(a) shows the experimental stability thresholds
for fluids 1, 2 and 3 at their inclination angles, in the (Re, fc) plane. Again, we
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Critical Reynolds number
Fluid φ Exp. fit Orr–Som Ruyer-Quil et al. (2012) Ng & Mei (1994) 5

6 cot φ

1 0.5◦ 38.5 35.1 34.8 34.8 95.5
2 3.5◦ 12.2 11.8 11.8 11.5 13.6
3 6.5◦ 5.7 5.79 5.7 5.45 7.3

TABLE 2. Critical Reynolds numbers found with different methods. Explanations are
given in the text.

find that the neutral frequency varies as a square root expression. We can then fit
(3.1) to our data and extract a critical Reynolds number. The extracted values are
given in table 2 and are found to be significantly smaller than in the Newtonian
case. In figure 4(b), we present together the experimental thresholds (symbols) and
the thresholds computed from the Orr–Sommerfeld equation resolution (solid lines).
The computational neutral curves fit the experimental points very well and the
numerically computed critical Reynolds number is very close to the one extracted
from the experiments (see table 2). The Newtonian case thresholds given by (3.2) are
plotted as empty stars. The theoretical thresholds obtained by Ng & Mei (1994) with
a power-law fluid and Ruyer-Quil et al. (2012) with a regularized power-law fluid
are respectively plotted as black dots and empty diamonds.

The first outcome of these results is experimental evidence of the destabilizing effect
of the shear-thinning property: in all three fluids, the critical Reynolds number is
lower than in the corresponding Newtonian case, and the effect is more pronounced
when the shear-thinning is important, as for fluid 1. We can also state that the critical
Reynolds numbers we found, both experimentally and numerically, correspond very
well to the values predicted by the theory of Ruyer-Quil et al. (2012) (long-wave
expansion method for a power-law fluid regularized at low shear rates). They also
correspond well to the values obtained with the model of Ng & Mei (1994). Finally,
we want to point out that the effect of the width of the channel here is perfectly
captured by the correction proposed by Georgantaki et al. (2011): for fluid 1, we have
Rec/R∗= 35.3 and for fluid 2, Rec/R∗= 11.7 (for Ka= 306 and Ka= 123 respectively),
which compare very well with the Orr–Sommerfeld values given in table 2. This is
possibly due to the shear-thinning property, which makes the viscosity at the sides of
the channel less important than for the corresponding Newtonian fluid.

Finally, figure 4(c) shows the wave phase speed c= 2πfc/k, rescaled by the surface
velocity U0 (U0 is calculated from q, φ and the rheology of the fluid). Again, we
compare the measurements with the numerical results from the Orr–Sommerfeld
formulation. The rescaled phase speed asymptotically reaches a maximum value at
the stability threshold, i.e. for k→ 0 and Re→ Rec. As expected from Millet et al.
(2008), this maximum value is bounded within an interval of c/U0 ∈ [2, (1 + 1/n)],
corresponding to the Newtonian and power-law limit cases of the Carreau model. It
should be noted that the power-law limit is reached in the case of fluid 1 since its
shear-thinning properties are much stronger.

Presented in these axes, the experimental data are noisier than in figure 4(a,b),
mostly because the scale of variation of c/U0 is very narrow, and therefore very
sensitive to the error, but also because it cumulates uncertainties present in the fc
and k independent measurements, and on the parameters to be used in the numerical
evaluation of U0. However, the agreement between experiments and computations is
still good.
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The obtained overall picture is consistent with the destabilizing effect observed in
figure 4(b): the phase speed to free-surface velocity ratio c/U0 reaches values larger
than 2 (the Newtonian value) at the threshold, and is larger when the shear-thinning is
more pronounced. However, despite its ability to produce the correct critical Reynolds
number, the power-law rheology model is not as good at predicting the critical wave
phase speed, since the derived c/U0 value does not reach the maximum value of (1+
1/n) for fluids 2 and 3.

5. Conclusion

In this study, stability experiments on film flows down an incline have been made
for weakly to moderately shear-thinning fluids at fixed inclination angles. The results
in terms of neutral curves and critical Reynolds number have been plotted in the
(Re, fc), (Re, k) and (Re, c/U0) planes, and are in good agreement with the numerical
results obtained by either a full resolution of the generalized Orr–Sommerfeld equation
or asymptotic expressions for the critical Reynolds number found in the literature
under the long-wave expansion theory. Measurements of marginal wavelengths near
the threshold remain difficult ( f < 1 Hz; λ> 20 cm), and their uncertainties affect the
results for the critical wave celerity. The probable stabilizing effect of the channel
width appears to be weak in the presented experimental runs. To the best of our
knowledge, this work is the first experimental measurement of the destabilizing effect
induced by the shear-thinning behaviour on liquid films flowing down an inclined
plane: at a given slope, the critical Reynolds number is lower and the rescaled phase
speed is higher than for a Newtonian fluid.

References

ALLOUCHE, M. H., BOTTON, V., HENRY, D., MILLET, S., USHA, R. & BEN HADID, H. 2015
Experimental determination of the viscosity at very low shear rate for shear thinning fluids
by electrocapillarity. J. Non-Newtonian Fluid Mech. 215, 60–69.

AMAOUCHE, M., DJEMA, A. & BOURDACHE, L. 2009 A modified Shkadov’s model for thin film
flow of a power law fluid over an inclined surface. C. R. Méc. 337 (1), 48–52.

ARGYRIADI, K., SERIFI, K. & BONTOZOGLOU, V. 2004 Nonlinear dynamics of inclined films under
low-frequency forcing. Phys. Fluids 16 (7), 2457–2468.

BENCHABANE, A. & BEKKOUR, K. 2008 Rheological properties of carboxymethyl cellulose (CMC)
solutions. Colloid Polym. Sci. 286 (10), 1173–1180.

BENJAMIN, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2
(06), 554–573.

CHAMBON, G., GHEMMOUR, A. & LAIGLE, D. 2009 Gravity-driven surges of a viscoplastic fluid:
an experimental study. J. Non-Newtonian Fluid Mech. 158, 54–62.

CHAMBON, G., GHEMMOUR, A. & NAAIM, M. 2014 Experimental investigation of viscoplastic
free-surface flows in a steady uniform regime. J. Fluid Mech. 754, 332–364.

COUSSOT, P. 1994 Steady, laminar flow of concentrated mud suspensions in open channel. J. Hydraul.
Res. 32 (4), 535–559.

DANDAPAT, B. S. & MUKHOPADHYAY, A. 2001 Waves on a film of power-law fluid flowing down
an inclined plane at moderate Reynolds number. Fluid Dyn. Res. 29 (3), 199–220.

DENNER, F., PRADAS, M., CHAROGIANNIS, A., MARKIDES, C. N., VAN WACHEM, B. G. M. &
KALLIADASIS, S. 2016 Self-similarity of solitary waves on inertia-dominated falling liquid
films. Phys. Rev. E 93, 033121.

ESCUDIER, M. P., GOULDSON, I. W., PEREIRA, A. S., PINHO, F. T. & POOLE, R. J. 2001 On
the reproducibility of the rheology of shear-thinning liquids. J. Non-Newtonian Fluid Mech.
97 (2), 99–124.

821 R1-10

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 E
co

le
 C

en
tr

al
e 

de
 L

yo
n,

 o
n 

31
 M

ay
 2

01
7 

at
 0

7:
32

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

:/w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
6

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.276


Instability of shear-thinning films

FERNÁNDEZ-NIETO, E. D., NOBLE, P. & VILA, J.-P. 2010 Shallow water equations for
non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 165 (13), 712–732.

FORTERRE, Y. & POULIQUEN, O. 2003 Long-surface-wave instability in dense granular flows. J. Fluid
Mech. 486, 21–50.

GEORGANTAKI, A., VATTEVILLE, J., VLACHOGIANNIS, M. & BONTOZOGLOU, V. 2011
Measurements of liquid film flow as a function of fluid properties and channel width:
evidence for surface-tension-induced long-range transverse coherence. Phys. Rev. E 84 (2),
026325.

HUANG, X. & GARCIA, M. H. 1998 A Herschel–Bulkley model for mud flow down a slope. J. Fluid
Mech. 374, 305–333.

JEONG, S. W. 2010 Grain size dependent rheology on the mobility of debris flows. Geosci. J. 14
(4), 359–369.

JOUVET, G., PICASSO, M., RAPPAZ, J., HUSS, M. & FUNK, M. 2011 Modelling and numerical
simulation of the dynamics of glaciers including local damage effects. Math. Modelling Natural
Phenom. 6 (5), 263–280.

KALLIADASIS, S., RUYER-QUIL, C., SCHEID, B. & VELARDE, M. G. 2011 Falling Liquid Films.
Springer.

KAPITZA, P. L. & KAPITZA, S. P. 1949 Wave flow of thin layers of viscous liquids. Part III.
Experimental research of a wave flow regime. Zh. Eksp. Teor. Fiz. 19, 105–120.

LIU, J., PAUL, J. D. & GOLLUB, J. P. 1993 Measurements of the primary instabilities of film flows.
J. Fluid Mech. 250, 69–101.

MILLET, S., BOTTON, V., ROUSSET, F. & BEN HADID, H. 2008 Wave celerity on a shear-thinning
fluid film flowing down an incline. Phys. Fluids 20 (3), 031701.

MOISY, F., RABAUD, M. & SALSAC, K. 2009 A synthetic schlieren method for the measurement of
the topography of a liquid interface. Exp. Fluids 46 (6), 1021–1036.

NG, C.-O. & MEI, C. C. 1994 Roll waves on a shallow layer of mud modeled as a power-law
fluid. J. Fluid Mech. 263, 151–183.

NOBLE, P. & VILA, J.-P. 2013 Thin power-law film flow down an inclined plane: consistent shallow-
water models and stability under large-scale perturbations. J. Fluid Mech. 735, 29–60.

RODD, A. B., DUNSTAN, D. E. & BOGER, D. V. 2000 Characterisation of xanthan gum solutions
using dynamic light scattering and rheology. Carbohydrate Polym. 42 (2), 159–174.

ROUSSET, F., MILLET, S., BOTTON, V. & BEN HADID, H. 2007 Temporal stability of Carreau fluid
flow down an incline. J. Fluids Engng Trans. ASME 129 (7), 913–920.

RUYER-QUIL, C., CHAKRABORTY, S. & DANDAPAT, B. S. 2012 Wavy regime of a power-law film
flow. J. Fluid Mech. 692, 220–256.

SMITH, M. K. 1990 The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech.
217, 469–485.

TAKAMURA, K., FISCHER, H. & MORROW, N. R. 2012 Physical properties of aqueous glycerol
solutions. J. Petrol. Sci. Engng 9899, 50–60.

VLACHOGIANNIS, M., SAMANDAS, A., LEONTIDIS, V. & BONTOZOGLOU, V. 2010 Effect of channel
width on the primary instability of inclined film flow. Phys. Fluids 22 (1), 012106.

WEINSTEIN, S. J. 1990 Wave propagation in the flow of shear-thinning fluids down an incline.
AIChE J. 36 (12), 1873–1889.

WHITHAM, G. B. 2011 Linear and Nonlinear Waves. Wiley.
YIH, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321–334.

821 R1-11

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 E
co

le
 C

en
tr

al
e 

de
 L

yo
n,

 o
n 

31
 M

ay
 2

01
7 

at
 0

7:
32

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

:/w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
6

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.276

	Primary instability of a shear-thinning film flow down an incline: experimental study
	Introduction
	Experimental set-up
	Description
	Detection methods
	Fluids

	Experimental test with a Newtonian fluid
	Primary instability in the shear-thinning case
	Conclusion
	References


